
Lineární algebra 1 10. cvičení

Maticové prostory

Cv. 10.1 Buď
A =

(
1 2
3 1

)
, v =

(
1
2

)
.

Postupně nad tělesy R, Z5 a Z7 rozhodněte, zda platí:

(a) v ∈ Ker(A),
(b) v ∈ S(A).

Řešení:
Z definice jádra a sloupcového prostoru matice platí

Ker(A) = {x ∈ Tn; Ax = 0},
S(A) = span{A∗1, . . . , A∗n} = {Ax; x ∈ Tn},

stačí tedy ověřit, zda vektor v = (1, 2)T řeší soustavu Ax = 0 nad daným tělesem
a zda platí Ax = v pro nějaké x ∈ T2.

Nad tělesem R:

(a) vektor v nepatří do jádra matice A, protože

Av =

(
1 2
3 1

)(
1
2

)
=

(
5
5

)
̸=

(
0
0

)
,

(b) vektor v patří do sloupcového prostoru matice A, protože soustava

(
A v

)
=

(
1 2 1
3 1 2

)
∼

(
1 2 1
0 −5 −1

)
∼

(
1 0 3

5

0 1 1
5

)
má řešení, konkrétně platí (1, 2)T = 3

5
(1, 3)T + 1

5
(2, 1)T .

Nad tělesem Z5:

(a) vektor v patří do Ker(A), protože

Av =

(
1 2
3 1

)(
1
2

)
=

(
0
0

)
,

(b) vektor v nepatří do S(A), protože soustava(
A v

)
=

(
1 2 1
3 1 2

)
∼

(
1 2 1
0 0 4

)
nemá nad tělesem Z5 řešení.

Nad tělesem Z7:

(a) vektor v nepatří Ker(A), protože

Av =

(
1 2
3 1

)(
1
2

)
=

(
5
5

)
̸=

(
0
0

)
,
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(b) vektor v patří do S(A), protože soustava

(
A v

)
=

(
1 2 1
3 1 2

)
∼

(
1 2 1
0 2 6

)
∼

(
1 0 2
0 1 3

)
má nad tělesem Z7 řešení a platí (1, 2)T = 2(1, 3)T + 3(2, 1)T .

Cv. 10.2 Najděte báze prostorů R(A), S(A) a Ker(A) pro matici

A =

1 2 2 3
2 4 1 3
3 6 1 4

 .

Řešení:
Převedeme matici A do redukovaného odstupňovaného tvaru RREF(A):

A =

1 2 2 3
2 4 1 3
3 6 1 4

 ∼

1 2 0 1
0 0 1 1
0 0 0 0

 = RREF(A).

Bázi řádkového prostoru R(A) tvoří (například) nenulové vektory v řádcích vý-
sledné matice, tedy vektory (1, 2, 0, 1)T , (0, 0, 1, 1)T . Důvodem je, že elementární
řádkové úpravy nemění řádkový prostor matice, a tedy R(A) = R( RREF(A)).
Najít bázi řádkového prostoru matice RREF(A) je pak jednoduché – jsou to
všechny nenulové řádky.

Bázi sloupcového prostoru můžeme vybrat z původních sloupců matice A, které
odpovídají bázickým sloupcům odstupňovaného tvaru. Bázické sloupce jsou první
a třetí, tedy vektory (1, 2, 3)T a (2, 1, 1)T tvoří bázi S(A). Zdůvodnění je teď jiné,
než v případě řádkového prostoru, protože elementární řádkové úpravy obecně
mohou změnit sloupový prostor matice. Co ale elementární řádkové úpravy ne-
mění, je lineární závislost a nezávislost mezi sloupci. Tudíž můžeme tvrdit: bázi
S( RREF(A) tvoří první a třetí sloupec matice RREF(A), proto bázi S(A) tvoří
první a třetí sloupec matice A.

Bázi jádra matice A získáme z řešení soustavy Ax = 0. Množinu všech řešení
této soustavy můžeme vyjádřit pomocí nebázických proměnných x2, x4 ve tvaru

(−2x2 − x4, x2,−x4, x4)
T = (−2, 1, 0, 0)Tx2 + (−1, 0,−1, 1)Tx4.

Bázi Ker(A) tedy tvoří např. vektory (−2, 1, 0, 0)T , (−1, 0,−1, 1)T .

Cv. 10.3 Najděte matici A takovou, že

(a) R(A) obsahuje vektory (1, 1)T , (1, 2)T a S(A) obsahuje (1, 0, 0)T , (0, 0, 1)T ,

(b) bázi R(A) i S(A) tvoří vektor (1, 1, 1)T a báze Ker(A) je (1,−2, 1)T .
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Řešení:

(a) Tento příklad je zaměřený na kreativitu a ne na postup podle šablony.
Proto popíšeme jen základní myšlenky, které pomohou hledanou matice
najít. Ze zadaných vektorů v řádkovém a sloupcovém prostoru vidíme, že
hledáme matici 3 × 2. Dále, z podmínek na řádkový prostor dostáváme
R(A) = R2, neboli stačí, aby matice A měla lineárně nezávislé sloupce.
Pokud dáme vektory z podmínky na S(A) přímo do sloupců matice A,
získáme požadovanou matici 1 0

0 0
0 1

 .

Hledaná matice ale není zdaleka jednoznačná. Požadovanou vlastnost spl-
ňují další matice, jako například1 1

0 0
1 2

 ,

0 1
0 0
1 0

 .

(b) V tomto případě hledáme matici 3× 3, pro kterou platí

dimR(A) = dimS(A) = rank(A) = 1, dimKer(A) = 1.

Z věty o dimenzi jádra a hodnosti matice ale víme, že pro každou matici
A ∈ Tm×n musí platit vztah

dimKer(A) + rank(A) = n.

V našem případě dostáváme 1 + 1 = dimKer(A) + rank(A) = 3. Matice
splňující požadované vlastnosti tedy neexistuje.

Cv. 10.4 Rozhodněte, zda pro matice A,B ∈ Rn×n platí

(a) S(A) = S(B) implikuje RREF(A) = RREF(B),

(b) RREF(A) = RREF(B) implikuje S(A) = S(B).

Řešení:

(a) Tvrzení neplatí. Například matice

A =

(
1 0
0 0

)
, B =

(
0 1
0 0

)
mají stejný sloupcový prostor

span{(1, 0)T , (0, 0)T} = S(A) = S(B) = span{(0, 0)T , (1, 0)T},

ale jejich redukované odstupňované tvary jsou různé (obě matice jsou v RREF).
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(b) Neplatí ani tato opačná implikace. Například pro matice

A =

(
1 0
0 0

)
, B =

(
0 0
1 0

)
máme RREF(A) = RREF(B) = A, ale přitom

span
{
(1, 0)T , (0, 0)T

}
= S(A) ̸= S(B) = span

{
(0, 1)T , (0, 0)T

}
.

Cv. 10.5 S využitím maticových prostorů určete dimenzi prostoru

V = {x ∈ Rn; x1 + . . .+ xn = 0}.

Řešení:

Prostor V odpovídá množině řešení soustavy(
1 1 · · · 1 0

)
,

to znamená jádru matice A =
(
1 1 · · · 1

)
Tato matice má rozměr 1×n a má hod-

nost 1. Pro dimenzi jádra použijeme vzoreček (věta o dimenzi jádra a hodnosti
matice):

dimV = dimKer(A) = n− rank(A) = n− 1.

Závěr: Hledaná dimenze je tedy n+ 1.
Kdybychom chtěli najít i bázi, tak jednoduše vyřešíme soustavu Ax = 0 po-
mocí Gaussovy eliminace. Bázi tak tvoří například vektory (1,−1, 0 . . . , 0)T ,
(0, 1,−1, 0 . . . , 0)T , . . . , (0 . . . , 0, 1,−1)T .

Cv. 10.6 Z vektorů vyberte bázi prostoru V = span{v1, v2, v3, v4} a pro ostatní vektory
najděte souřadnice vůči této bázi:

v1 = (3, 1, 5, 4)T , v2 = (2, 2, 3, 3)T , v3 = (1,−1, 2, 1)T , v4 = (1, 3, 1, 1)T .

Řešení:
Zapíšeme jednotlivé vektory do sloupců matice A, kterou převedeme do reduko-
vaného odstupňovaného tvaru

A =


3 2 1 1
1 2 −1 3
5 3 2 1
4 3 1 1

 ∼


1 0 1 0
0 1 −1 0
0 0 0 1
0 0 0 0

 = RREF(A).

Připomeňme, že elementární řádkové úpravy zachovávají lineární závislost a ne-
závislost mezi sloupci, a to dokonce i konkrétní lineární kombinace. Tudíž z ma-
tice RREF(A) snadno vyčteme nejen bázi prostoru S(A) = V , ale i hledané
souřadnice.
Vidíme, že bázické sloupce jsou první, druhý a čtvrtý. Bázi prostoru S(A) = V
tedy tvoří původní vektory v1 = (3, 1, 5, 4)T , v2 = (2, 2, 3, 3)T a v4 = (1, 3, 1, 1)T .
Ze třetího sloupce upravené matice RREF(A) dostaneme souřadnice vektoru v3
vzhledem k bázi B = {v1, v2, v4}, neboť platí

v3 = (1,−1, 2, 1)T = 1 · (3, 1, 5, 4)T + (−1) · (2, 2, 3, 3)T ,

a tedy [v3]B = (1,−1, 0)T .
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Cv. 10.7 Určete, jaký je vztah mezi prostory Ker(AB) a Ker(B) pro matice

(a) A ∈ Rm×n, B ∈ Rn×p,

(b) A ∈ Rn×n regulární, B ∈ Rn×p.

Řešení:

(a) Nechť x ∈ Ker(B), pak z definice jádra platí Bx = o. Vektor x patří také
do jádra matice AB, protože

(AB)x = A(Bx) = Ao = o,

dostaneme tedy inkluzi Ker(B) ⊆ Ker(AB). Obrácená inkluze obecně ne-
platí, např. pro A = 0n a B = In je vektor y = (1, 0, . . . , 0)T v jádru matice
AB, ale nikoliv v jádru matice B.

(b) Nahlédneme, že pro regulární matici A platí také inkluze Ker(AB) ⊆ Ker(B),
a tedy můžeme psát Ker(AB) = Ker(B).
Důkaz. Nechť x ∈ Ker(AB), potom (AB)x = o. Z regularity matice A
existuje inverzní matice A−1, pro kterou platí

Bx = (A−1A)Bx = A−1((A B)x) = A−1o = o,

z čehož plyne x ∈ Ker(B).

Cv. 10.8 Rozhodněte, zda platí rank(A+B) ≤ rank(A) + rank(B) pro A,B ∈ Rm×n.

(Hint: Jaký je vztah mezi prostory S(A+B) a S(A) + S(B)?)

Řešení:
Uvažujme prostor generovaný sjednocením sloupců matice A a sloupců matice B,
tedy spojení S(A) + S(B). Dimenze tohoto prostoru je

dim(S(A) + S(B)) ≤ dimS(A) + dimS(B) = rank(A) + rank(B).

Dále, prostor S(A) + S(B) obsahuje všechny vektory generované sloupci matice
A+B, tedy S(A+B) je podprostorem S(A) + S(B). Platí proto

rank(A+B) = dimS(A+B) ≤ dim(S(A) + S(B)) ≤ rank(A) + rank(B).


