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Interval Linear Programming

Consider a linear programming problem. . .

minimize cTx subject to Ax ≤ b

estimating the future
€15.6 ≤ c ≤ €17.1

inexact measurements
a = 5± 0.05g

approximation and rounding

b ≈ 3.14159

discretization of time
tmin = 22 °C, tmax = 23.5 °C

representing missing data
0.66, 0.21, 0.84, d =?, 0.05
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Interval Linear Programming

Consider an interval linear programming problem. . .

minimize [c]Tx subject to [A]x ≤ [b]

estimating the future
[c] = [15.6, 17.1]

inexact measurements
[a] = [4.95, 5.05]

approximation and rounding

[b] = [3.141592, 3.141593]

discretization of time
[t] = [22, 23.5]

representing missing data
[d] = [0, 1]
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Interval Linear Programming: Definitions
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• An interval linear program is a family of linear programs

minimize cTx subject to x ∈ M(A,b),

where A ∈ [A],b ∈ [b], c ∈ [c] andM(A,b) is the feasible set.

• A linear program in the family is called a scenario.

• Usually, we consider one of the three main forms:
1 minimize [c]Tx subject to [A]x = [b], x ≥ 0,
2 minimize [c]Tx subject to [A]x ≤ [b],
3 minimize [c]Tx subject to [A]x ≤ [b], x ≥ 0.
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Interval Linear Programming: Example

maximize x2
subject to [−1, 1]x1 + x2 ≤ 0

x2 ≤ 1

• What are the possible feasible/optimal solutions?
• What is the set of all optimal values?
• Are all scenarios of the interval program bounded?

Vector x is a (weakly) feasible/optimal solution to an interval
program, if x is a feasible/optimal solution for some scenario
with A ∈ [A], b ∈ [b], c ∈ [c].
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Interval Linear Programming: Example

maximize x2
subject to [−1, 1]x1 + x2 ≤ 0

x2 ≤ 1

-4 -3 -2 -1 1 2 3 4
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Let's traverse through this!

−1 1
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Interval Linear Programming: Example

maximize x2
subject to [−1, 1]x1 + x2 ≤ 0

x2 ≤ 1
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Interval Linear Programming: Example

maximize x2
subject to [−1, 1]x1 + x2 ≤ 0

x2 ≤ 1
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Optimal values: {0, 1}
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Dependency Problem

max x1
s. t. [0, 1]x1 − x2 = 0,

x2 ≤ 1,
x1, x2 ≥ 0.

max x1
s. t. x1 − x2 ≤ 0,

x1 − x2 ≥ 0,
x2 ≤ 1,

x1, x2 ≥ 0.

Optimal set: {(x1, x2) ∈ R2 : x1 ∈ [1,∞) and x2 = 1}

The solution (0,0) is now optimal, too!
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Properties of Interval Linear Programs

Weak/strong feasibility

• Is there a feasible scenario (a weakly feasible solution)?
• Is each scenario feasible?

Weak/strong unboundedness

• Is there a scenario with an unbounded objective value?
• Do all scenarios have an unbounded objective value?

Weak/strong optimality

• Is there a scenario with an optimal solution?
• Do all scenarios have an optimal solution?
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Weak Feasibility: Characterization

Theorem (Oettli–Prager, 1964; Gerlach, 1981)

x ∈ Rn solves [A]x = [b] ⇔ |Acx− bc| ≤ A∆|x|+ b∆
x ∈ Rn solves [A]x ≤ [b] ⇔ Acx− A∆|x| ≤ b

x1

x2

For x ≥ 0, we obtain a linear system!

Otherwise, we can use orthant decom-

position.

a

a

ac
a∆
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Weak Feasibility: Complexity

Theorem (Gerlach, 1981)

x ∈ Rn solves [A]x ≤ [b] ⇔ Acx− A∆|x| ≤ b

Theorem (Rohn, 2006)
Testing weak feasibility is NP-hard for interval linear systems
of type [A]x ≤ [b].

Why?

Checking feasibility of a system of inequalities in the form

−e ≤ Ax ≤ e, eT|x| ≥ 1,

where e = (1, . . . , 1)T, is NP-hard. Apply Gerlach's theorem.
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Strong Feasibility: Characterization

Theorem (Rohn, 1981)
An interval linear system in the form [A]x = [b], x ≥ 0 is
strongly feasible if and only if for each p ∈ {±1}m the system

(Ac − diag(p)A∆)x = bc + diag(p)b∆, x ≥ 0

is feasible.

Theorem (Rohn & Kreslová, 1994)
An interval linear system in the form [A]x ≤ [b] is strongly
feasible if and only if the system Ax1 − Ax2 ≤ b, x1 ≥ 0, x2 ≥ 0.
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Strong Feasibility: Complexity

Theorem (Rohn, 2006)
Testing strong feasibility is co-NP-hard for interval linear
systems of type [A]x = [b], x ≥ 0.

Why?

[A]x = [b], x ≥ 0 is weakly infeasible
⇕

[A]Ty ≥ 0, [b]Ty < 0 is weakly feasible

Far
kas

' Le
mm

a
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Weak Unboundedness: Characterization

Theorem (Hladík, 2012)
An interval program in the form min[c]Tx : [A]x ≤ [b], x ≥ 0 is
weakly unbounded if and only if the linear program
min cTx : Ax ≤ b, x ≥ 0 is unbounded.

Theorem
An interval program in the form min[c]Tx : [A]x ≤ [b] is weakly
unbounded if and only if the interval linear program
min[c]Tx : [A]x ≤ [b],diag(p)x ≥ 0 is weakly unbounded for
some p ∈ {±1}n.
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Weak Unboundedness: Complexity

Theorem
Testing weak unboundedness is NP-hard for interval linear
programs of type min[c]Tx : [A]x ≤ [b].

Why?

min z : [A]x ≤ [b] is weakly unbounded
⇕

[A]x ≤ [b] is weakly feasible

Proved to be NP-hard

Open problem: What about equations?
(Optimizing on the weakly feasible set is not sufficient.)
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Strong Unboundedness: Characterization

Theorem (Hladík, 2012)
An interval linear program is strongly unbounded if and only
if it is strongly feasible and its dual is not weakly feasible.

Theorem (Koníčková, 2006)
An interval linear program in the form

min[c]Tx : [A]x = [b], x ≥ 0

is strongly unbounded if and only if for each p ∈ {±1}m the
linear program

min cTx : (Ac − diag(p)A∆)x = bc + diag(p)b∆, x ≥ 0

is unbounded.
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Strong Unboundedness: Complexity

Theorem (Koníčková, 2006)
Testing strong unboundedness is co-NP-hard for interval
linear programs of type min[c]Tx : [A]x = [b], x ≥ 0.

Why?

max z : [A]x = [b], x ≥ 0, z ≥ 0 is strongly unbounded
⇕

[A]x = [b], x ≥ 0 is strongly feasible

Proved to be co-NP-hard
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Weak Optimality: Characterization

Lemma (Hladík, 2012)
An interval linear program is weakly optimal, if it is strongly
feasible and its dual is weakly feasible, or vice versa.

Lemma (Hladík, 2012)
If an interval linear program is weakly optimal, then both the
program itself and its dual are weakly feasible.

Weak feasibility of the interval linear program and its
dual is not sufficient for weak optimality!
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Weak Optimality: Complexity

Theorem
Testing weak optimality is NP-hard for all three basic types
of interval linear programs.

Why?

1 min0Tx : [A]x ≤ [b] is weakly optimal
⇔ [A]x ≤ [b] is weakly feasible

2 min[c]Tx : [A]x = [b], x ≥ 0 is weakly optimal
⇔ max[b]Ty : [A]Ty ≤ [c] is weakly optimal

3 We omit the proof for min[c]Tx : [A]x ≤ [b], x ≥ 0.

Proved to be NP-hard
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Strong Optimality: Characterization

Theorem (Hladík, 2012)
An interval linear program is strongly optimal if and only if
it is strongly feasible and its dual program also strongly
feasible.

Therefore, we have…

min[c]Tx : [A]x ≤ [b], x ≥ 0 is strongly optimal
⇕

Ax ≤ b, x ≥ 0, ATy ≤ c, y ≤ 0 is feasible
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Strong Optimality: Complexity

Theorem
Testing strong optimality is co-NP-hard for interval programs
of types min[c]Tx : [A]x = [b], x ≥ 0 and min[c]Tx : [A]x ≤ [b].
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What about multiple criteria?

• H. Ishibuchi and H. Tanaka, Multiobjective programming in
optimization of the interval objective function (1990).

• M. Hladík, Complexity of necessary efficiency in interval linear
programming and multiobjective linear programming (2012).

• S. Rivaz and M. A. Yaghoobi, Weighted sum of maximum
regrets in an interval MOLP problem (2015).

• C. O. Henriques and D. Coelho, A multiobjective interval
portfolio model for supporting the selection of energy
efficient lighting technologies (2017).

• C. O. Henriques and D. Coelho, Multiobjective Interval
Transportation Problems: A Short Review (2017).

• …
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Conclusion

min [c]Tx min [c]Tx min [c]Tx
[A]x = [b], x ≥ 0 [A]x ≤ [b] [A]x ≤ [b], x ≥ 0

strong feasibility co-NP-hard polynomial polynomial
weak feasibility polynomial NP-hard polynomial
strong unboundedness co-NP-hard polynomial polynomial
weak unboundedness ? NP-hard polynomial
strong optimality co-NP-hard co-NP-hard polynomial
weak optimality NP-hard NP-hard NP-hard

Thanks for your attention!
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