Solving Interval Linear Programs

From Theory to Algorithms

Elif Garajová, Milan Hladík

Department of Applied Mathematics Faculty of Mathematics and Physics, Charles University, Prague

17th Workshop on Advances in Continuous Optimization (EUROPT 2019)

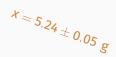
- rounding errors,
- estimations and approximations,
- measurement errors,
- discretization,

- rounding errors,
- estimations and approximations,
- measurement errors,
- discretization,

- rounding errors,
- · estimations and approximations,
- measurement errors,
- discretization,

 $x \in [3.141592, 3.141593]$ $1.215 \le x \le 1.321$

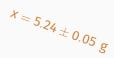
- rounding errors,
- estimations and approximations,
- measurement errors,
- discretization,



$$x_{min} = 25.3, \, x_{max} = 25.9$$

 $x \in [3.141592, 3.141592,$

- rounding errors,
- · estimations and approximations,
- measurement errors,
- discretization,



$$x_{min} = 25.3, x_{max} = 25.9$$

1

Representing Interval Uncertainty

Definition

Given two matrices $\underline{A}, \overline{A} \in \mathbb{R}^{m \times n}$ with $\underline{A} \leq \overline{A}$, we define an interval matrix $[A] = [\underline{A}, \overline{A}]$ as the set

 $\{\mathbf{A}\in\mathbb{R}^{m\times n}:\underline{\mathbf{A}}\leq\mathbf{A}\leq\overline{\mathbf{A}}\}.$

Analogously, we define an **interval vector (box)** $[b] = [\underline{b}, \overline{b}]$ for $\underline{b}, \overline{b} \in \mathbb{R}^n$ with $\underline{b} \leq \overline{b}$ as the set

 $\{b \in \mathbb{R}^n : \underline{b} \le b \le \overline{b}\}.$

Representing Interval Uncertainty

Definition

Given two matrices $\underline{A}, \overline{A} \in \mathbb{R}^{m \times n}$ with $\underline{A} \leq \overline{A}$, we define an interval matrix $[A] = [\underline{A}, \overline{A}]$ as the set

$$\{A \in \mathbb{R}^{m \times n} : \underline{A} \le A \le \overline{A}\}.$$

Analogously, we define an interval vector (box) $[b] = [\underline{b}, \overline{b}]$ for $\underline{b}, \overline{b} \in \mathbb{R}^n$ with $\underline{b} \leq \overline{b}$ as the set

 $\{b \in \mathbb{R}^n : \underline{b} \le b \le \overline{b}\}.$

For example
$$[A] = \begin{pmatrix} [0,1] & 2 \\ [3,5] & [-1,1] \end{pmatrix}$$
 or $[b] = \begin{pmatrix} [1,2] \\ [0,3] \\ [1,2] \end{pmatrix}$.

Representing Interval Uncertainty

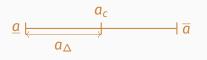
Definition

Given two matrices $\underline{A}, \overline{A} \in \mathbb{R}^{m \times n}$ with $\underline{A} \leq \overline{A}$, we define an interval matrix $[A] = [\underline{A}, \overline{A}]$ as the set

$$\{A \in \mathbb{R}^{m \times n} : \underline{A} \le A \le \overline{A}\}.$$

Analogously, we define an interval vector (box) $[b] = [\underline{b}, \overline{b}]$ for $\underline{b}, \overline{b} \in \mathbb{R}^n$ with $\underline{b} \leq \overline{b}$ as the set

 $\{b \in \mathbb{R}^n : \underline{b} \le b \le \overline{b}\}.$



center
$$A_c = rac{1}{2}(\overline{A} + \underline{A})$$

radius $A_{\Delta} = rac{1}{2}(\overline{A} - \underline{A})$

Definition

Given $[A] \in \mathbb{IR}^{m \times n}$, $[b] \in \mathbb{IR}^m$, $[c] \in \mathbb{IR}^n$, we define an interval linear program (in the standard form)

minimize $[c]^T x$ subject to $[A]x = [b], x \ge 0$

as the set of all linear programs in the form minimize $c^T x$ subject to $Ax = b, x \ge 0$ with $A \in [A], b \in [b], c \in [c]$.

A solution $x \in \mathbb{R}^n$ is called **weakly feasible/optimal**, if it is feasible/optimal for some scenario of the interval linear program.

Definition

Given $[A] \in \mathbb{IR}^{m \times n}$, $[b] \in \mathbb{IR}^m$, $[c] \in \mathbb{IR}^n$, we define an interval linear program (in the standard form)

minimize $[c]^T x$ subject to $[A]x = [b], x \ge 0$

as the set of all linear programs in the form minimize $c^T x$ subject to $Ax = b, x \ge 0$ with $A \in [A], b \in [b], c \in [c]$.

A solution $x \in \mathbb{R}^n$ is called **weakly feasible/optimal**, if it is feasible/optimal for some scenario of the interval linear program.

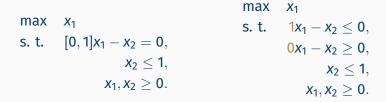
Let us consider a linear program with an interval equation...

$$\begin{array}{ll} \max & x_1 \\ \text{s. t.} & [0,1]x_1 - x_2 = 0, \\ & x_2 \leq 1, \\ & x_1, x_2 \geq 0. \end{array}$$

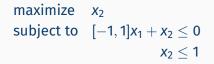
Optimal set: $\{(x_1, x_2) \in \mathbb{R}^2 : x_1 \in [1, \infty) \text{ and } x_2 = 1\}$

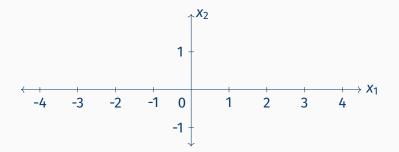
...and split the equation into two inequalities.

Optimal set: $\{(x_1, x_2) \in \mathbb{R}^2 : x_1 \in [1, \infty) \text{ and } x_2 = 1\}$

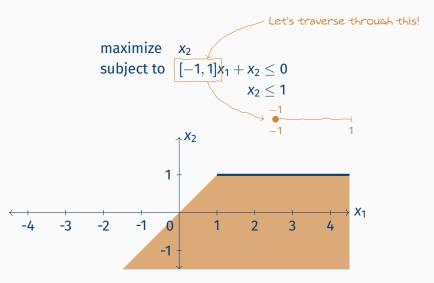


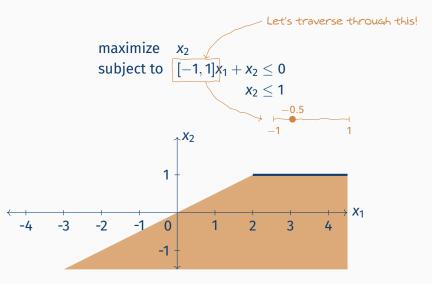
Optimal set: $\{(x_1, x_2) \in \mathbb{R}^2 : x_1 \in [1, \infty) \text{ and } x_2 = 1\}$ The solution (0, 0) is now optimal, too!

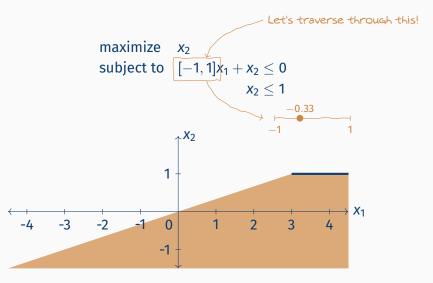


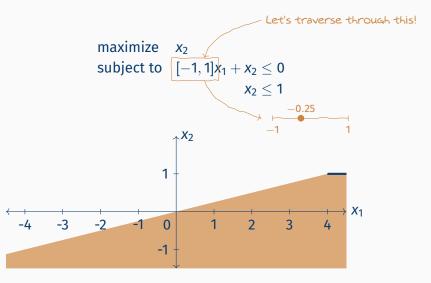


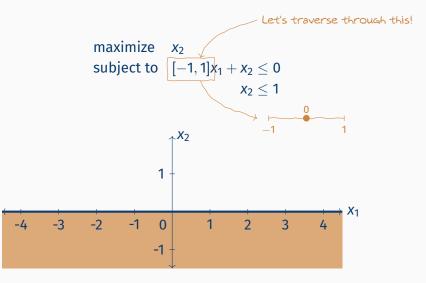
5

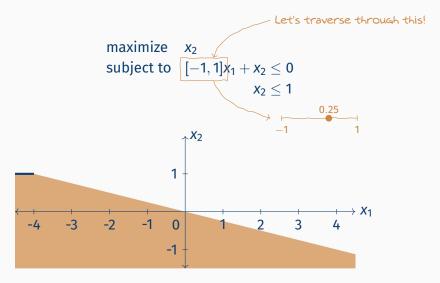


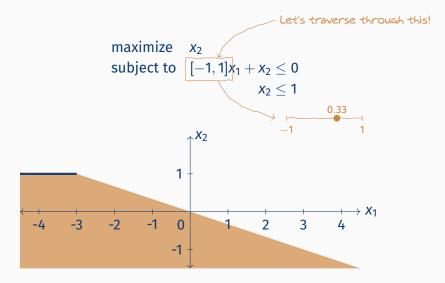


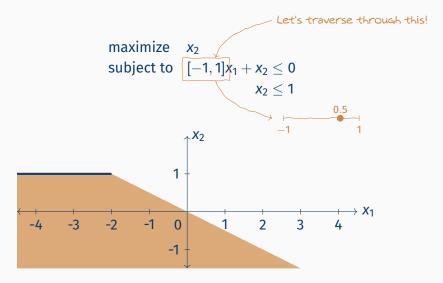


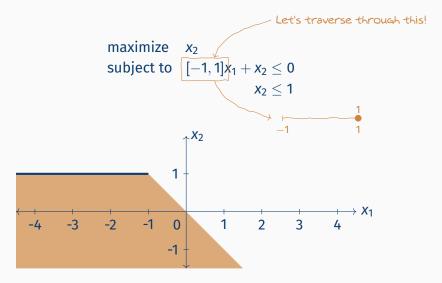


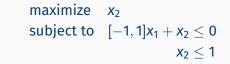


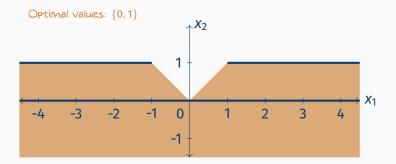




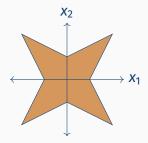








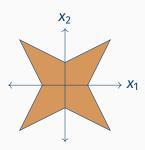
 $x \in \mathbb{R}^n$ solves $[A]x = [b] \Leftrightarrow |A_c x - b_c| \le A_\Delta |x| + b_\Delta$ $x \in \mathbb{R}^n$ solves $[A]x \le [b] \Leftrightarrow A_c x - A_\Delta |x| \le \overline{b}$



The feasible solution set is not convex, in general.

But, it becomes convex when restricted to an orthant.

$$x \in \mathbb{R}^n$$
 solves $[A]x = [b] \Leftrightarrow |A_c x - b_c| \le A_\Delta |x| + b_\Delta$
 $x \in \mathbb{R}^n$ solves $[A]x \le [b] \Leftrightarrow A_c x - A_\Delta |x| \le \overline{b}$

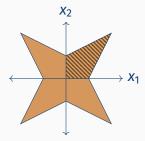


Given a signature $s \in {\pm 1}^n$, the corresponding orthant is the set

 $\{x \in \mathbb{R}^n : \operatorname{diag}(s)x \ge 0\}.$

Furthermore, we have |x| = diag(s)x.

$$x \in \mathbb{R}^n$$
 solves $[A]x = [b] \Leftrightarrow |A_c x - b_c| \le A_\Delta |x| + b_\Delta$
 $x \in \mathbb{R}^n$ solves $[A]x \le [b] \Leftrightarrow A_c x - A_\Delta |x| \le \overline{b}$

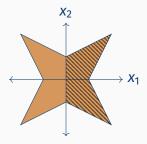


Orthant decomposition (ineq.): For $x \ge 0$ we have the feasible set

$$A_{c}x - A_{\Delta}x \leq \overline{b},$$

or $\underline{A}x \leq \overline{b}$.

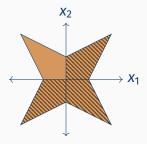
$$x \in \mathbb{R}^n$$
 solves $[A]x = [b] \Leftrightarrow |A_c x - b_c| \le A_\Delta |x| + b_\Delta$
 $x \in \mathbb{R}^n$ solves $[A]x \le [b] \Leftrightarrow A_c x - A_\Delta |x| \le \overline{b}$



In general, for $diag(s)x \ge 0$ we have the feasible set

$$A_c x - A_\Delta diag(s) x \leq \overline{b}.$$

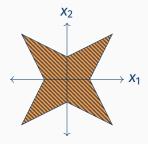
$$x \in \mathbb{R}^n$$
 solves $[A]x = [b] \Leftrightarrow |A_c x - b_c| \le A_\Delta |x| + b_\Delta$
 $x \in \mathbb{R}^n$ solves $[A]x \le [b] \Leftrightarrow A_c x - A_\Delta |x| \le \overline{b}$



In general, for $diag(s)x \ge 0$ we have the feasible set

 $A_c x - A_\Delta \operatorname{diag}(s) x \leq \overline{b}.$

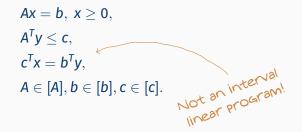
$$x \in \mathbb{R}^n$$
 solves $[A]x = [b] \Leftrightarrow |A_c x - b_c| \le A_\Delta |x| + b_\Delta$
 $x \in \mathbb{R}^n$ solves $[A]x \le [b] \Leftrightarrow A_c x - A_\Delta |x| \le \overline{b}$



In general, for $diag(s)x \ge 0$ we have the feasible set

$$A_c x - A_\Delta diag(s) x \leq \overline{b}.$$

Using duality of classical linear programming, we can obtain a parametric characterization of the optimal solution set



In general, the optimal solution set may be complicated (non-convex, disconnected). However, for some special cases, we can derive stronger characterizations. For a fixed constraint matrix, we can describe the weakly optimal solution set by the non-linear system

$$\begin{aligned} &Ax = b, \ x \geq 0, A^{T}y \leq c, x^{T}(c - A^{T}y) = 0, \\ &\underline{b} \leq b \leq \overline{b}, \ \underline{c} \leq c \leq \overline{c}. \end{aligned}$$

Now, complementary slackness can be equivalently restated as $\forall i \in \{1, ..., n\} : x_i = 0 \lor z_i = 0$ with $z = c - A^T y$.

Theorem

The set of weakly optimal solutions of the interval LP

minimize $[c]^T x$ subject to $Ax = [b], x \ge 0$

is a union of at most 2ⁿ convex polyhedra.

For a fixed constraint matrix, we can describe the weakly optimal solution set by the non-linear system

$$\begin{aligned} &Ax = b, \ x \geq 0, A^{T}y \leq c, x^{T}(c - A^{T}y) = 0, \\ &\underline{b} \leq b \leq \overline{b}, \ \underline{c} \leq c \leq \overline{c}. \end{aligned}$$

Now, complementary slackness can be equivalently restated as $\forall i \in \{1, ..., n\} : x_i = 0 \lor z_i = 0$ with $z = c - A^T y$.

Theorem

The set of weakly optimal solutions of the interval LP

minimize $[c]^T x$ subject to $Ax = [b], x \ge 0$

is a union of at most 2ⁿ convex polyhedra.

For a fixed constraint matrix, we can describe the weakly optimal solution set by the non-linear system

$$\begin{aligned} &Ax = b, \ x \geq 0, A^{\mathsf{T}}y \leq c, x^{\mathsf{T}}(c - A^{\mathsf{T}}y) = 0, \\ &\underline{b} \leq b \leq \overline{b}, \ \underline{c} \leq c \leq \overline{c}. \end{aligned}$$

Now, complementary slackness can be equivalently restated as $\forall i \in \{1, ..., n\} : x_i = 0 \lor z_i = 0$ with $z = c - A^T y$.

Theorem

The set of weakly optimal solutions of the interval LP

minimize $[c]^T x$ subject to $Ax = [b], x \ge 0$

is a union of at most 2ⁿ convex polyhedra.

Definition Given a basis $B \subseteq \{1, ..., n\}$, an interval linear program minimize $[c]^T x$ subject to $[A]x = [b], x \ge 0$ is **B-stable**, if B is an optimal basis for each scenario.

Theorem (Beeck, 1978; Hladík, 2014) Under unique B-stability, the set of all weakly optimal solutions is

$$\underline{A}_B x_B \leq \overline{b}, \ -\overline{A}_B x_B \leq -\underline{b}, \ x_B \geq 0, \ x_N = 0.$$

But, B-stability is NP-hard to test!

Definition

Given a basis $B \subseteq \{1, \ldots, n\}$, an interval linear program

minimize $[c]^T x$ subject to $[A]x = [b], x \ge 0$

is **B-stable**, if B is an optimal basis for each scenario.

Theorem (Beeck, 1978; Hladík, 2014) Under unique B-stability, the set of all weakly optimal solutions is

$$\underline{A}_{B}x_{B} \leq \overline{b}, \ -\overline{A}_{B}x_{B} \leq -\underline{b}, \ x_{B} \geq 0, \ x_{N} = 0.$$

But, B-stability is NP-hard to test!

Definition

Given a basis $B \subseteq \{1, \ldots, n\}$, an interval linear program

minimize $[c]^T x$ subject to $[A]x = [b], x \ge 0$

is **B-stable**, if B is an optimal basis for each scenario.

Theorem (Beeck, 1978; Hladík, 2014) Under unique B-stability, the set of all weakly optimal solutions is

$$\underline{A}_{B}x_{B} \leq \overline{b}, \ -\overline{A}_{B}x_{B} \leq -\underline{b}, \ x_{B} \geq 0, \ x_{N} = 0.$$

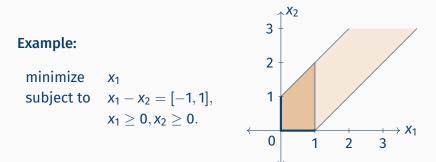
But, B-stability is NP-hard to test!

By convention, we say that a problem "maximize f(x) subject to $x \in X$ " is NP-hard, if the corresponding decision problem "Is $f(x) \ge r$ for some $x \in X$?" is NP-hard.

```
Theorem
Let S(A, [b], c) denote the optimal set of an interval LP
                    minimize c^T x
                   subject to Ax = [b], x > 0.
Then, the problem
                     optimize x_i
                    subject to x \in \mathcal{S}(A, [b], c)
for i \in \{1, \ldots, n\} is NP-hard.
```

To obtain a simpler approximation of the optimal set, we can relax the dependencies in the parametric description and consider the corresponding interval linear program

$$[A]x = [b], x \ge 0, [A]^T y \le [c], [c]^T x = [b]^T y$$



Orthant decomposition:

For signatures $s \in \{\pm 1\}^m$ solve $c_c^T x - b_c^T y \le c_{\Delta}^T x + b_{\Delta}^T \operatorname{diag}(s) y, \ c_c^T x - b_c^T y \ge -c_{\Delta}^T x - b_{\Delta}^T \operatorname{diag}(s) y,$ $\underline{A} x \le \overline{b}, \ -\overline{A} x \le -\underline{b}, \ x \ge 0,$ $A_c^T y - A_{\Delta}^T \operatorname{diag}(s) y \le \overline{c}, \ \operatorname{diag}(s) y \ge 0.$

$$\begin{split} & [A]x = [b], \\ & x_i = 0, \quad ([A]^T y)_i \leq [c]_i, \quad \text{for } i \in I, \\ & x_j \geq 0, \quad ([A]^T y)_j = [c]_j, \quad \text{for } j \notin I. \end{split}$$

 $\begin{array}{ll} \text{Orthant decomposition:} & [c]^T x = [b]^T y \\ \text{For signatures } s \in \{\pm 1\}^m \text{ solve} \\ c_c^T x - b_c^T y \leq c_\Delta^T x + b_\Delta^T \text{diag}(s)y, \ c_c^T x - b_c^T y \geq -c_\Delta^T x - b_\Delta^T \text{diag}(s)y, \\ \underline{A}x \leq \overline{b}, \ -\overline{A}x \leq -\underline{b}, \ x \geq 0, \\ A_c^T y - A_\Delta^T \text{diag}(s)y \leq \overline{c}, \ \text{diag}(s)y \geq 0. \end{array}$

$$\begin{split} & [A]x = [b], \\ & x_i = 0, \quad ([A]^T y)_i \leq [c]_i, \quad \text{for } i \in I, \\ & x_j \geq 0, \quad ([A]^T y)_j = [c]_j, \quad \text{for } j \notin I. \end{split}$$

 $\begin{array}{ll} \text{Orthant decomposition:} & [A]x = [b], x \geq 0 \\ \text{For signatures } s \in \{\pm 1\}^m \text{ solve} \\ c_c^T x - b_c^T y \leq c_\Delta^T x + b_\Delta^T \text{diag}(s)y, \ c_c^T x - b_c^T y \geq -c_\Delta^T x - b_\Delta^T \text{diag}(s)y, \\ \underline{A}x \leq \overline{b}, \ -\overline{A}x \leq -\underline{b}, \ x \geq 0, \\ A_c^T y - A_\Delta^T \text{diag}(s)y \leq \overline{c}, \ \text{diag}(s)y \geq 0. \end{array}$

$$egin{aligned} & [A]x = [b], \ & x_i = 0, \quad ([A]^T y)_i \leq [c]_i, & ext{for } i \in I, \ & x_j \geq 0, \quad ([A]^T y)_j = [c]_j, & ext{for } j \notin I. \end{aligned}$$

 $\begin{array}{ll} \text{Orthant decomposition:} & [A]^T y \leq [c] \\ \text{For signatures } s \in \{\pm 1\}^m \text{ solve} \\ c_c^T x - b_c^T y \leq c_\Delta^T x + b_\Delta^T \text{diag}(s) y, \ c_c^T x - b_c^T y \geq -c_\Delta^T x - b_\Delta^T \text{diag}(s) y, \\ \underline{A} x \leq \overline{b}, \ -\overline{A} x \leq -\underline{b}, \ x \geq 0, \\ A_c^T y - A_\Delta^T \text{diag}(s) y \leq \overline{c}, \ \text{diag}(s) y \geq 0. \end{array}$

Decomposition by complementarity: For an index set $I \subseteq \{1, ..., n\}$ solve

$$\begin{split} & [A]x = [b], \\ & x_i = 0, \quad ([A]^T y)_i \leq [c]_i, \ \ \text{for} \ i \in I, \\ & x_j \geq 0, \quad ([A]^T y)_j = [c]_j, \ \ \text{for} \ j \notin I. \end{split}$$

Orthant decomposition:

For signatures $s \in \{\pm 1\}^m$ solve $c_c^T x - b_c^T y \le c_{\Delta}^T x + b_{\Delta}^T \operatorname{diag}(s) y, \ c_c^T x - b_c^T y \ge -c_{\Delta}^T x - b_{\Delta}^T \operatorname{diag}(s) y,$ $\underline{A} x \le \overline{b}, \ -\overline{A} x \le -\underline{b}, \ x \ge 0,$ $A_c^T y - A_{\Delta}^T \operatorname{diag}(s) y \le \overline{c}, \ \operatorname{diag}(s) y \ge 0.$

$$\begin{split} & [A]x = [b], \\ & x_i = 0, \quad ([A]^T y)_i \leq [c]_i, \text{ for } i \in I, \\ & x_j \geq 0, \quad ([A]^T y)_j = [c]_j, \text{ for } j \notin I. \end{split}$$

We have the interval relaxation to describe the optimal set: $[A]x = [b], \ x \ge 0, [A]^T y \le [c], [c]^T x = [b]^T y.$

Combining it with the Oettli–Prager and Gerlach theorems, we obtain a system with absolute-value non-linearities.

Theorem (Beaumont, 1998; Hladík, 2012) Let $\mathbf{y} = [\underline{y}, \overline{y}] \in \mathbb{IR}$ with $\underline{y} < \overline{y}$. Then for every $y \in \mathbf{y}$ it holds that $|\mathbf{y}| \le \alpha \mathbf{y} + \beta$,

where

$$\alpha = \frac{|\overline{\mathbf{y}}| - |\underline{\mathbf{y}}|}{\overline{\mathbf{y}} - \underline{\mathbf{y}}}, \quad \beta = \frac{\overline{\mathbf{y}}|\underline{\mathbf{y}}| - \underline{\mathbf{y}}|\overline{\mathbf{y}}|}{\overline{\mathbf{y}} - \underline{\mathbf{y}}}$$

We have the interval relaxation to describe the optimal set:

$$[A]x = [b], x \ge 0, [A]^T y \le [c], [c]^T x = [b]^T y.$$

Combining it with the Oettli-Prager and Gerlach theorems, we obtain a system with absolute-value non-linearities.

Theorem (Beaumont, 1998; Hladík, 2012) Let $\mathbf{y} = [\underline{y}, \overline{y}] \in \mathbb{IR}$ with $\underline{y} < \overline{y}$. Then for every $y \in \mathbf{y}$ it holds that $|\mathbf{y}| \le \alpha \mathbf{y} + \beta$,

where

$$\alpha = \frac{|\overline{\mathbf{y}}| - |\underline{\mathbf{y}}|}{\overline{\mathbf{y}} - \underline{\mathbf{y}}}, \quad \beta = \frac{\overline{\mathbf{y}}|\underline{\mathbf{y}}| - \underline{\mathbf{y}}|\overline{\mathbf{y}}|}{\overline{\mathbf{y}} - \underline{\mathbf{y}}}$$

We have the interval relaxation to describe the optimal set:

$$[A]x = [b], x \ge 0, [A]^T y \le [c], [c]^T x = [b]^T y.$$

Combining it with the Oettli-Prager and Gerlach theorems, we obtain a system with absolute-value non-linearities.

Theorem (Beaumont, 1998; Hladík, 2012) Let $\mathbf{y} = [\underline{y}, \overline{y}] \in \mathbb{IR}$ with $\underline{y} < \overline{y}$. Then for every $y \in \mathbf{y}$ it holds that $|\mathbf{y}| \le \alpha \mathbf{y} + \beta$,

where

$$\alpha = \frac{|\overline{\mathbf{y}}| - |\underline{\mathbf{y}}|}{\overline{\mathbf{y}} - \underline{\mathbf{y}}}, \quad \beta = \frac{\overline{\mathbf{y}}|\underline{\mathbf{y}}| - \underline{\mathbf{y}}|\overline{\mathbf{y}}|}{\overline{\mathbf{y}} - \underline{\mathbf{y}}}$$

Approximating the optimal set by an **interval box** (or a **convex polyhedron**) can lead to significant overestimation.

To obtain a tighter approximation, we can also describe the (non-convex) set by a **subpaving,** i.e. a **union of interval boxes.**

Branch-and-bound interval methods have been successfully applied in solving non-linear constraints and linear parametric systems yielding a subpaving for the described feasible set.

Approximating the optimal set by an **interval box** (or a **convex polyhedron**) can lead to significant overestimation.

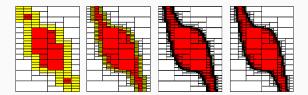
To obtain a tighter approximation, we can also describe the (non-convex) set by a **subpaving**, i.e. a **union of interval boxes**.

Branch-and-bound interval methods have been successfully applied in solving non-linear constraints and linear parametric systems yielding a subpaving for the described feasible set.

Approximating the optimal set by an **interval box** (or a **convex polyhedron**) can lead to significant overestimation.

To obtain a tighter approximation, we can also describe the (non-convex) set by a **subpaving**, i.e. a **union of interval boxes**.

Branch-and-bound interval methods have been successfully applied in solving non-linear constraints and linear parametric systems yielding a subpaving for the described feasible set.



Conclusion

- We consider the problem of characterizing the set of all weakly optimal solutions of an interval linear program.
- Several methods for approximating the optimal set have been proposed throughout the years, such as enclosures of the **interval relaxation**, **orhant** or **complementarity decomposition** or iterative **linearization-based** algorithms.
- As using interval boxes or general convex polyhedra may lead to high overestimation of the set, applying a **branchand-bound** method to describe the set by a **union of boxes** may be beneficial.

- We consider the problem of characterizing the set of all **weakly optimal solutions** of an **interval linear program**.
- Several methods for approximating the optimal set have been proposed throughout the years, such as enclosures of the interval relaxation, orhant or complementarity decomposition or iterative linearization-based algorithms.
- As using interval boxes or general convex polyhedra may lead to high overestimation of the set, applying a **branchand-bound** method to describe the set by a **union of boxes** may be beneficial.

- We consider the problem of characterizing the set of all **weakly optimal solutions** of an **interval linear program**.
- Several methods for approximating the optimal set have been proposed throughout the years, such as enclosures of the interval relaxation, orhant or complementarity decomposition or iterative linearization-based algorithms.
- As using interval boxes or general convex polyhedra may lead to high overestimation of the set, applying a branchand-bound method to describe the set by a union of boxes may be beneficial.

References

M. Fiedler J. Nedoma J. Ramík J. Rohn K. Zimmermann

Linear Optimization Problems with Inexact Data (2006). Authors: M. Fiedler, J. Nedoma, J. Ramík, J. Rohn, K. Zimmermann

On the optimal solution set in interval linear programming

Countral (

Elif Garajová¹O - Milan Hladik¹

Received: 17 October 2016 / Published online: 17 August 2018 IO Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract

Determining the set of all optimal solutions of a linear program with matrix data is of the point allowing problem discussed in the optimation. In this process, or define non-collingary problem discussed in the optimation of the point and the optimation of the op

Keywords Interval linear programming \cdot Optimal solution set \cdot Decomposition methods \cdot Topological properties

1 Introduction

Throughout the years, linear programming has become a widely used mathematical tool for modelling and solving practical optimization problems. However, real-world

On the optimal solution set in interval linear programming (2019). E. Garajová, M. Hladík. Computational Optimization and Applications.

References

M. Fiedler J. Nedoma J. Ramík J. Rohn K. Zimmermann

Linear Optimization Problems with Inexact Data (2006). Authors: M. Fiedler, J. Nedoma, J. Ramík, J. Rohn, K. Zimmermann

On the optimal solution set in interval linear programming

Countral (

Elif Garajová¹O - Milan Hladik¹

Received: 17 October 2016 / Published online: 17 August 2018 IO Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract

Determining the set of all optimal solutions of a linear program with matrix data is of the point allowing problem discussed in the optimation. In this process, or define non-collingary problem discussed in the optimation of the point and the optimation of the op

Keywords Interval linear programming - Optimal solution set - Decomposition methods - Topological properties

1 Introduction

Throughout the years, linear programming has become a widely used mathematical tool for modelling and solving practical optimization problems. However, real-world

Thank you for your attention!

Slides will be available at http://elif.cz.

On the optimal solution set in interval linear

Computational Optimization and Applications.

programming (2019). E. Garajová, M. Hladík.