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Interval Linear Programming

• An interval linear program is a family of linear programs

minimize cTx subject to Ax = b, x ≥ 0

where A ∈ [A],b ∈ [b], c ∈ [c].

• A linear program in the family is called a scenario.

• Dependency problem:

• [A]x = [b] → [A]x ≤ [b], [A]x ≥ [b]

• [A]x ≤ [b] → [A]x+ − [A]x− ≤ [b], x+, x− ≥ 0
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The Questions

• What are the feasible solutions?
• What is the set of optimal solutions and values?
• Is a given solution feasible?
• Is a given feasible solution also optimal?
• Is the interval linear program bounded?
• . . .

But how do we define feasibility, optimality
and other properties?
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Seeking Optimal Values

Optimal value of an LP: f(A,b, c) = inf{cTx : Ax ≤ b}

• f(A,b, c) = −∞ if it is unbounded,
• f(A,b, c) = ∞ if it is infeasible,
• f(A,b, c) = cTx∗ if there is an optimal solution x∗.

Optimal value range of an ILP:

• Lower bound of the optimal value range:

f([A], [b], [c]) = inf {f(A,b, c) : A ∈ [A],b ∈ [b], c ∈ [c]}

• Upper bound of the optimal value range:

f([A], [b], [c]) = sup {f(A,b, c) : A ∈ [A],b ∈ [b], c ∈ [c]}

Other concepts: Set of optimal values, Duality gap, . . .
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Optimal Value Range

How to compute the optimal value range [f, f]?

Best optimal value:
f = inf cTx : Ax ≤ b,Ax ≥ b, x ≥ 0

Worst optimal value:
f = sups∈{±1}m f(Ac − diag(s)A∆,bc + diag(s)b∆, c)

Theorem (Rohn, 1997)
Deciding whether f(A, [b], c) ≥ 1 holds is NP-hard for interval
linear programs of type min cTx : Ax = [b], x ≥ 0.
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Weak and Strong Properties

• We can study, whether a given property holds for at least
one scenario of the program (weak property), or whether
it holds for all scenarios (strong property).

• A given vector x is a weakly/strongly feasible solution to
an interval linear program, if x is a feasible solution for
some/each scenario with A ∈ [A], b ∈ [b], c ∈ [c].

• An interval linear program is weakly/strongly feasible, if
some/each scenario of the program is feasible.
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Weak and Strong Feasibility

Theorem (Oettli & Prager, 1964; Gerlach, 1981)

The interval linear system [A]x = [b] is weakly feasible
⇔ |Acx− bc| ≤ A∆|x|+ b∆ is feasible.

The interval linear system [A]x ≤ [b] is weakly feasible
⇔ Acx− A∆|x| ≤ b is feasible.

Theorem (Rohn, 1981; Rohn & Kreslová, 1994)

The interval linear system [A]x = [b] is strongly feasible
⇔ (Ac − diag(s)A∆)x1 − (Ac + diag(s)A∆)x2 = bc − diag(s)b∆,
x1, x2 ≥ 0 is feasible for each s ∈ {±1}m.

The interval linear system [A]x ≤ [b] is strongly feasible
⇔ Ax1 − Ax2 ≤ b, x1, x2 ≥ 0 is feasible.

6



Weak and Strong Optimality of a Solution

A given vector x is a weakly/strongly optimal solution to an
interval linear program, if x is an optimal solution for
some/each scenario with A ∈ [A], b ∈ [b], c ∈ [c].

We have conditions for testing weak and strong optimality of
a solution:

• M. Rada, M. Hladík, E. Garajová, Testing weak optimality of a
given solution in interval linear programming revisited (2018).

• J. Luo, W. Li, Strong optimal solutions of interval linear
programming (2013).

However, some of the cases are NP-hard to decide.
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Describing the Weakly Optimal Set

Computing the interval hull of the set of all weakly optimal
solutions is an NP-hard problem, in general.

• Linear programming algorithms
• Interval simplex method (Machost, 1970; Gunn and Anders,
1981; Jansson, 1988; …)

• Relaxations
• Interval relaxation and orthant decomposition
• Linearization of absolute value

• Parametric programming methods, Branch-and-bound
• Solving special cases

• Linear programs with interval objective or right-hand side
• Fixed coefficient matrix
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Weak and Strong Optimality of a Program

An interval linear program is weakly/strongly optimal, if
some/each scenario of the program has an optimal solution.

Theorem
An interval linear program min [c]Tx : [A]x = [b], x ≥ 0 is
weakly optimal if and only if the parametric program

Ax = b, x ≥ 0, ATy ≤ c, A ∈ [A],b ∈ [b], c ∈ [c]

is feasible.

Theorem
An interval linear program is strongly optimal if and only if it
is strongly feasible and its dual program is also strongly
feasible.
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The Complexity of Weak Optimality (ILP)

Theorem
Testing weak optimality is NP-hard for all three basic types
of interval linear programs.

Why?

1 min0Tx : [A]x ≤ [b] is weakly optimal
⇔ [A]x ≤ [b] is weakly feasible

2 min[c]Tx : [A]x = [b], x ≥ 0 is weakly optimal
⇔ max[b]Ty : [A]Ty ≤ [c] is weakly optimal

3 We omit the proof for min[c]Tx : [A]x ≤ [b], x ≥ 0.

Proved to be NP-hard

10



The Complexity of Weak Optimality (ILP)

Theorem
Testing weak optimality is NP-hard for all three basic types
of interval linear programs.

Why?

1 min0Tx : [A]x ≤ [b] is weakly optimal
⇔ [A]x ≤ [b] is weakly feasible

2 min[c]Tx : [A]x = [b], x ≥ 0 is weakly optimal
⇔ max[b]Ty : [A]Ty ≤ [c] is weakly optimal

3 We omit the proof for min[c]Tx : [A]x ≤ [b], x ≥ 0.

10



The Complexity of Weak Optimality (ILP)

Theorem
Testing weak optimality is NP-hard for all three basic types
of interval linear programs.

Why?

1 min0Tx : [A]x ≤ [b] is weakly optimal
⇔ [A]x ≤ [b] is weakly feasible

2 min[c]Tx : [A]x = [b], x ≥ 0 is weakly optimal
⇔ max[b]Ty : [A]Ty ≤ [c] is weakly optimal

3 We omit the proof for min[c]Tx : [A]x ≤ [b], x ≥ 0.

10



The Complexity of Strong Optimality (ILP)

Theorem
Testing strong optimality is co-NP-hard for interval programs
of types min[c]Tx : [A]x = [b], x ≥ 0 and min[c]Tx : [A]x ≤ [b].

Why?

1 min0Tx : [A]x = [b], x ≥ 0 is strongly optimal
⇔ [A]x = [b], x ≥ 0 is strongly feasible

Proved to be co-NP-hard

2 min[c]Tx : [A]x ≤ [b] is strongly optimal
⇔ max[b]Ty : [A]Ty = [c], y ≤ 0 is strongly optimal

3 min[c]Tx : [A]x ≤ [b], x ≥ 0 is strongly optimal
⇔ Ax ≤ b, x ≥ 0,ATy ≤ c, y ≤ 0 is feasible
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Overview of Complexity

min [c]Tx min [c]Tx min [c]Tx
[A]x = [b], x ≥ 0 [A]x ≤ [b] [A]x ≤ [b], x ≥ 0

of
a
pr
og
ra
m strong feasibility co-NP-hard polynomial polynomial

weak feasibility polynomial NP-hard polynomial
strong optimality co-NP-hard co-NP-hard polynomial
weak optimality NP-hard NP-hard NP-hard

of
a
so
lu
tio
n strong feasibility polynomial polynomial polynomial

weak feasibility polynomial polynomial polynomial
strong optimality ? co-NP-hard ?
weak optimality NP-hard polynomial polynomial
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Basis Stability

Definition
Given a basis B ⊆ {1, . . . ,n}, an interval linear program

minimize [c]Tx subject to [A]x = [b], x ≥ 0

is B-stable, if B is an optimal basis for each scenario.

Theorem
Under unique B-stability, the set of all weakly optimal
solutions is

ABxB ≤ b, −ABxB ≤ −b, xB ≥ 0, xN = 0.
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Other Concepts of Feasibility

• A vector x ∈ Rn is a tolerance solution of [A]x = [b] if for
each A ∈ [A] there exists a b ∈ [b] such that Ax = b holds.

• A vector x ∈ Rn is a control solution of [A]x = [b] if for
each b ∈ [b] there exists an A ∈ [A] such that Ax = b holds.

• Split the coefficients to universally and existentially
quantified: Let [A] = [A∀] + [A∃], [b] = [b∀] + [b∃]. A vector
x ∈ Rn is an AE solution of [A]x = [b] if

(∀A∀ ∈ [A∀])(∀b∀ ∈ [b∀])(∃A∃ ∈ [A∃])(∃b∃ ∈ [b∃]) :
(A∀ + A∃)x = b∀ + b∃.
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Generalized Strong Optimality

A vector x ∈ Rn is1…

• a (∅)-strong optimal solution of the ILP if it is an optimal solution for
some scenario with A ∈ [A],b ∈ [b], c ∈ [c].

• a ([c])-strong optimal solution of the ILP if for each c ∈ [c] there exist
A ∈ [A],b ∈ [b] such that x is optimal for the scenario (A,b, c).

• a ([b])-strong optimal solution of the ILP if for each b ∈ [b] there exist
A ∈ [A], c ∈ [c] such that x is optimal for the scenario (A,b, c).

• …
• a ([b], [c])-strong optimal solution of the ILP if for each b ∈ [b], c ∈ [c]
there exists A ∈ [A] such that x is optimal for the scenario (A,b, c).

• an ([A], [b], [c])-strong optimal solution of the ILP if it is an optimal
solution for each scenario with A ∈ [A],b ∈ [b], c ∈ [c].

1Luo, J., Li, W., Strong optimal solutions of interval linear programming
(2013).
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Generalized Optimality of a Program

Theorem
An interval linear program min [c]Tx : [A]x = [b], x ≥ 0 is
(A)-strongly optimal if and only if the interval linear system

[A]x = b, x ≥ 0,b ≤ b ≤ b,
[A]Ty ≤ c, c ≤ c ≤ c

is strongly feasible.

An analogous result can be obtained for (A,b)-strong
and (A, c)-strong optimality of an ILP.
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Even More Generalization

Generalized strong optimality considers only ∀∃-quantified
definitions. By changing the order of the quantifiers, we can
introduce even further notions of optimality and feasibility2:

• Is there a c ∈ [c] such that the scenario (A,b, c) has an
optimal solution for each A ∈ [A],b ∈ [b]?

• Is there a c ∈ [c] such that for each A ∈ [A] there is a
b ∈ [b] such that the scenario (A,b, c) has an optimal
solution?

2Shary, S.P., A New Technique in Systems Analysis Under Interval
Uncertainty and Ambiguity (2002).
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Even More Generalized Optimality of a Program

Theorem
There is a c ∈ [c] such that the scenario (A,b, c) has an
optimal solution for each A ∈ [A],b ∈ [b] if and only if the
interval linear system

[A]x = [b], x ≥ 0,
[A]Ty ≤ c

is strongly feasible.
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Further Research

• Fast algorithms for tight enclosures of the optimal sets
with respect to the various concepts of optimality.

• A unified systematic description of conditions for testing
generalized strong optimality.

• Other properties of interval programs (boundedness,
optimal values, etc.) in the generalized strong sense.

• Exploring a weaker notion of basis stability.

Thanks for your attention!
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